
Style Transfer with Facial Preservation

Zachary Ferguson
New York University
zfergus@nyu.edu

(a) (b) (c)

Figure 1: In style transfer, the style of image (a) is applied
to the content of image (b) to produce a new stylized image
(c).

1. Intro
Style transfer allows us to automatically transfer the style

of one image onto the contents of another image, generat-
ing a stylized image. Figure 1 shows an example of style
transfer. There are several techniques for performing style
transfer including non-photorealistic rendering [10], opti-
mization via Neural Style Transfer (NST) [8], and learning
fast style transformations through deep learning [13].

In this paper, we follow up on the work of Gatys et al.
[8] and Johnson et al. [13] by using and training convolu-
tional neural networks (CNN) to transfer an arbitrary style
from one image to another image. We propose the extended
problem of stylizing an image while preserving facial fea-
tures. This problem requires new extensions upon the orig-
inal model proposed by Johnson et al. to account for facial
differences in the stylized image.

2. Related Work
Gatys et al. [8] introduced the idea of Neural Style Trans-

fer as an online optimization problem using the feature lay-
ers of a pretrained CNN to perform style transfer. John-
son et al. [13] then showed how to train a feed-forward net-
work to approximate the optimization problem proposed by
Gatys et al. By learning a function for style transfer, John-
son et al. were able to perform fast style transfer with run-
times capable of real-time video stylization.

Although Neural Style Transfer is a recent development,
there has been a large amount of work in the area. Some
more recent work have improved upon the work of Johnson

Face Loss Network
MTCNN OpenFace

Figure 2: Architecture used to train a style transfer net-
work. The original architecture described by Johnson et
al. [13] (circled in red) is extended by adding a face loss
network. The face loss network is comprised of a face
detection network (MTCNN) and a face recognition net-
work (OpenFace). The loss network and face loss network
compute the perceptual loss for training the image trans-
formation network to transfer style from ys onto content of
yc = x.

et al. by allowing for multiple styles per trained model [3, 6,
14, 23] or an arbitrary style per model [21, 18, 15, 11, 9, 4].
Gatys et al. [7] also proposed a solution to preserving colors
during style transfer. Jing et al. provides an in-depth survey
and hierarchy of the work done in style transfer [12]. Our
work, directly follows that of Johnson et al., but there may
be room for improvement by using more recent methods.

3. Method

Our style transfer methodology follows that of Johnson
et al. [13], training a feed-forward convolutional neural net-
work to learn style transfer using perceptual loss (described
in Section 3.1). Figure 2 shows the original model architec-
ture consisting of two networks, an image transformation
network and a loss network. The loss network computes
the perceptual loss from activation layers, and the image
transformation network stylizes the input image. A single
image transformation network is trained for each style, a
limitation of the methodology of Johnson et al, using the

1



computed loss of the loss network.
We extend upon this network by defining a new loss

term, `ψface, that penalizes changes in facial features. The
original method of Johnson et al. took no special attention
to any particular content of the image. We show that by
defining specialized losses we can penalize changes in cer-
tain features of the original image.

3.1. Perceptual Loss

Perceptual loss, as opposed to per-pixel loss, uses the
perceptual features of a pretrained “loss” network, φ, to
compute the perceptual difference between two images
[13]. In our case, the pretrained loss network is an image
classifier trained on a image classification dataset. More
specifically, we use the 16-layer VGG network [19] pre-
trained on ImageNet [5].

Put simply, the various activation layers of the loss net-
work represent different perceptual knowledge of the im-
age. Earlier activation layers quantify style elements of the
image such as the color and texture. Later activation layers
have a deeper understanding of the content of the image.

3.1.1 Content Loss

Using the loss network, we can compute the loss in content
of the stylized image as being the difference in activation
layers. For a stylized image y and the original content image
yc the content loss is defined as

`φ,jcontent(y, yc) =
1

CjHjWj
‖φj(y)− φj(yc)‖22 (1)

where φj(x) is the jth activation layer (of shape Cj ×Hj ×
Wj) of the network φ for input x.

3.1.2 Style Loss

Using the loss network, we can compute the loss in style
of the stylized image as being the difference in activation
layers. Borrowing the style loss from Gatys et al. [8], we
first need to define the Gram matrix Gφj (x) as

Gφj (x)c,c′ =
1

CjHjWj

Hj∑
h=1

Wj∑
w=1

φj(x)h,w,cφj(x)h,w,c′

(2)

For a stylized image y and the style image ys the style loss
is then defined as

`φ,jstyle(y, ys) = ‖G
φ
j (y)−G

φ
j (ys)‖

2
F (3)

For multiple activation layers, J , rather than a single
layer, j, we take the sum of the individual styles losses,
`φ,Jstyle(y, ys) =

∑
j∈J `

φ,j
style(y, ys).

3.1.3 Total Variation Regularization

Additionally, Johnson et al. [13] suggests using total vari-
ation regularization, `TV(y) to encourage spacial smooth-
ness.

3.2. Style Transfer

Using perceptual loss, we can defined a loss function,
`(y, yc, ys), for our image transformation network to train
under.

`(y, yc, ys) =λc`
φ,j
content(y, yc)

+λs`
φ,J
style(y, ys)

+λTV`TV(y)

(4)

λc, λs, and λTV are scalar weights used to weight the im-
portance of each component as well as normalize each loss
relative to each other.

3.3. Facial Preservation

The base perceptual loss only preserves content on a
global level, according to the features of the higher acti-
vation layers of the loss network. We propose adding an
additional loss term to account for the difference in facial
features between the original content image and the styl-
ized image. By including this loss term we can specifically
penalize any “drastic” changes to the facial features. Figure
2 show the new face loss network used in combination with
the original network of Johnson et al.

3.3.1 Face Loss

To quantify the difference in facial features between the
original, yc = x, and stylized image, y, we use face recog-
nition. We first find the faces in yc using Multi-task Cas-
caded Convolutional Networks (MTCNN) by Zhang et al.
[24]1. MTCCN produces a bounding box for the faces. Us-
ing these bounding boxes, patches are extracted and resized
to be 96 × 96 (yc,face for the patch found in yc and yface
for the corresponding patch in y). We then use these re-
sized patches and OpenFace [1] to compute a face descrip-
tor embeded on a 128-dimension hyper-sphere.2 The dis-
tance between two face descriptors is a measure of similar-
ity (a unique property of OpenFace). Finally, we define the
face loss as

`ψface(y, yc) =
∑

face∈yc

‖ψ(yface)− ψ(yc,face)‖22 (5)

1A pretrained PyTorch version off MTCCN by Dan Antoshchenko
(https://github.com/TropComplique/mtcnn-pytorch) is used with minor
modifications.

2A pretrained PyTorch version of OpenFace by GitHub user
TwoBranchDracaena (https://github.com/TwoBranchDracaena/OpenFace-
PyTorch) is used.

2

https://github.com/TropComplique/mtcnn-pytorch
https://github.com/TwoBranchDracaena/OpenFace-PyTorch
https://github.com/TwoBranchDracaena/OpenFace-PyTorch


St
yl

e
Im

ag
e

Without Facial Preservation With Facial Preservation

C
on

te
nt

Im
ag

e
Fa

ce
s

�ψ f

0.0264 0.0299 0.0074 0.0143 0.0078 0.0170 0.0118 0.0047

Figure 3: We train two models with the manga style image, one without and one with facial preservation. Shown here are
the results of stylizing the content image using the two models. The Faces row shows the face patches found using MTCNN.
The last row shows the face loss between the stylized faces and the original faces. In the majority of cases facial preservation
decreases the face loss, but the third face’s loss increased in this instance.

where ψ is our face recognition network and ψ(x) is the
face descriptor.

Using the face loss we define a new total loss, �′, to op-
timize.

�′(y, yc, ys) = �(y, yc, ys) + λf �
ψ
face(y, yc) (6)

Figure 3 shows the affects of using this additional face
loss as well as the faces patches found by MTCNN and the
face loss with and without facial preservation.

4. Experiments
We implement the network described by Johnson et al.

[13] in PyTorch. The loss network uses PyTorch’s VGG-16
network pretrained on ImageNet image classification. Ad-
ditionally, we utilize PyTorch’s implementation of instance
normalization to replace the batch normalization in the orig-
inal image transformation model. Ulyanov et al. showed
that instance normalization improves the quality of style
transfer [20]. The original model used fractional striding
to up-sample the convolutional layers. To avoid checker-
boarding artifacts, the results are first up-sampled using
nearest-neighbor interpolation then convolved. Oden et al.
showed that this reduces artifacts over transposed convolu-
tion by avoiding overlap [17].

4.1. Results of Style Transfer

We trained an image transformation model for six differ-
ent style images (five shown in Figure 4 and one show in

Figure 5). We train by completing two epochs of training
using the 2017 COCO Dataset, an image dataset consist-
ing of 118 thousand images [16]. Some results of stylized
images are shown in Figure 4.

4.1.1 Style Weight

Careful choice of weights (λs, λc, and λTV) is important
to get good results out of style transfer. For all mod-
els we fixed the weights to be λs = 1010, λc = 105,
and λTV = 10−6.3 We experimented with different style
weights (results shown in Figure 5) to improved stylization,
but the original weight of λs = 1010 provided the best re-
sults.

4.1.2 Resolution Dependence

One issue with the style transfer of Johnson et al. is that
the style features the model learns are resolution dependent.
That is, when stylizing an image the resolution of the input
affects the scale of style elements. Figure 6 shows this with
the tiling of the mosaic style. We hypothesis the issue stems
from the training. During training all content images are re-
sized to a fixed size (256 × 256 in all of our examples), so
the network learns to stylize that fixed resolution. Further
experiments are need to prove this hypothesis, however. We

3The weights are borrowed from the open
source implementation of fast style transfer
(https://github.com/pytorch/examples/tree/master/fast neural style).

3

https://github.com/pytorch/examples/tree/master/fast_neural_style


Styles
C

on
te

nt

Figure 4: Style transfer results for 5 different style images. Styles images are (from left to right) Mosaic, The Great Wave
off Kanagawa by Hokusai, The Starry Night by Vincent van Gogh, Rain’s Rustle by Leonid Afremov, and artwork from
Fullmetal Alchemist by Hiromu Arakawa.

suggest training more models on different content resolu-
tion (for example 128× 128 or 512× 512).

4.2. Stylizing Styles

As a experiment, we stylized each style image with the
style of the others style images. From this we got mixed
results. Some styles (e.g. mosaic style) transferred well,
overriding the style of the content image. Other results,
however, are subpar (e.g. A Sunday Afternoon on the Island
of La Grande Jatte), resulting in patches of style placed on
top of the original image. We hypothesis these issues come
from transferring to an image that already has a lot of color
and texture. In these cases, the style transfer has a hard time

overriding the original style of the image. Interestingly, we
can also exam the results of stylizing the same style image.
These results for the most part are good with some of them
resulting is slightly less contrast.

4.3. Results of Facial Preservation

We trained an image transformation model with style
preservation for two different style images (one shown in
Figure 9 and the other show in Figure 8). We continued to
use the 2017 COCO Dataset and found many faces in the
training images.

4



St
yl

e
Im

ag
e

λs = 109 λs = 1010 λs = 1011

C
on

te
nt

Im
ag

es

Figure 5: Varying the style weight λs by one order of mag-
nitude in either direction can greatly affect the results of
style transfer. Here the style of A Sunday Afternoon on the
Island of La Grande Jatte by Georges Seurat is applied to
three different content images with three different values of
style weight. A value of λs = 1010 produces the best re-
sults. With lighter weight, λs = 109, the content of the
original image takes precedent and the stylization is weak.
With heavier weight, λs = 1011, the style takes precedent
and original content is partially ignored.

(a) 920× 640 (b) 460× 320

(c) 232× 160 (d) 116× 80

Figure 6: The network is trained on images of size 256 ×
256, but the resolution can vary at evaluation. The learned
style features depend on the size at training time, however.
When the input is high resolution the style features are fine,
as seen in (a), and when the input is small the transferred
features are coarse, covering large areas of the stylized im-
age, as in (d).

4.3.1 Face Weight

We experiment with various values for λf to fine results of
facial preservation. The results for four different weights
can be seen in Figure 10. In the end, we landed on a weight
of λf = 107, three orders of magnitude less than the style
weight. This weight worked well for the manga style (see in
Figure 9), but may have been to high for other styles. Fine
tuning this hyperparameter is the most challenging aspect
of getting good facial preservation.

4.3.2 Quantitative Tests

To verify the results of facial preservation we stylized a
face dataset (VGGFace2 [2]) and computed the difference
in face loss without and with facial preservation. The results
of these test are shown in Figure 11. Overall, facial preser-
vation works well in terms of facial recognition. These
quantitative results also confirm qualitative difference be-
tween the mosaic and manga style.

5. Discussion
While our face preserving model works well it is not

without limitation. Resolving these limitations and expand-
ing upon target content preservation is our biggest goals go-
ing forward.

5.1. Limitations

5.1.1 One Style Per Model

A limitation with the method of Johnson et al. is the limita-
tion to one style per model. Others have show its is possible
to train for multiple or an arbitrary style. Incorporating their
work with ours is interesting future work.

5.1.2 Training Performance

Training fast style transfer models is fast, around four hours
with a single Nvidia GeForce GTX 1080 Ti. However, the
addition of facial preservation brings training time up to 10
or 12 hours. The additional time is due to several factors.
First we have to process each image in a batch separately
because faces and face locations are not shared between im-
ages. Additionally, not all training images have faces in
them, but we still spend time using MTCCN to try and find
faces. It may be beneficial to include meta-information to
determine if face detection should be run.

5.2. Testing Method

We showed that we can test the performance of our style
transfer using the face loss to quantify the quality of re-
sults. This does not guarantee that we will get appealing
style transfer, just that the faces will still be recognizable.

5



Styles
C

on
te

nt

Figure 7: Style images used as style and content. The diagonal shows the style image stylized by the same style image.
The residual blocks in the network help the network more easily learn the identity, so the diagonal images are only slightly
transformed.

It may be worth to craft a measure of stylized quality or to
perform a user study over a large dataset of stylized images.

5.3. Future Work

5.3.1 Learning Better Hyperparameters

One of the biggest challenges in training our network is the
tuning of hyperparameters to weight loss terms. Their is
no guarantee the weights of one style will work well with
another. In the future we would like to incorporate hyper-
parameter optimization to learn weights for loss terms.

5.4. Training on a Face Dataset

We used the VGGFace2 test face dataset [2] to test the
performance of our models, but we may get improved re-

sults by training on a general dataset hallways and then fine
tuning on a training face dataset like VGGFace2’s training
dataset.

5.4.1 General Target Content Preservation

We have show that it is possible to curate losses that pre-
serve target features of the content. While we limit our-
selves to faces, we expect that this same methodology can
be used to target any particular content. In the future, we
would like to explore general user specified preservation.
This maybe possible using visual attention in the loss net-
work. One direction to improve our work would be to use
a Face Attention Network by Wang et al. [22]. This may
produce better results for smaller or more obscured faces.

6



St
yl

e
Im

ag
e

Without Facial
Preservation

With Facial
Preservation

C
on

te
nt

Im
ag

es

Figure 8: Results of stylizing faces without and with facial
preservation with the mosaic style. We get mixed results
with some faces appearing cleaner (row 1, 2, and 5), others
showing little difference (row 3 and 6), and some worsen-
ing the face (row 4). Interestingly with the black and white
picture of Elvis (row 2), the colorization temperature are
opposite.

References

[1] B. Amos, B. Ludwiczuk, and M. Satyanarayanan. Openface:
A general-purpose face recognition library with mobile ap-
plications. Technical report, CMU-CS-16-118, CMU School

St
yl

e
Im

ag
e

Without Facial
Preservation

With Facial
Preservation

C
on

te
nt

Im
ag

es

Figure 9: Results of stylizing faces without and with fa-
cial preservation with the manga style. With this style we
get better results then that of Figure 8, both qualitatively
and quantitatively as seen in Figure 11. Faces, in general,
appear clearer, devoid of any style artifacts. The face loss,
however, prevents some loss in color specifically around the
face. For example, John Snow’s face (row 5) has some color
with facial preservation. In experimentation we found that
gray-scale versions of a face has non-zero face loss.

of Computer Science, 2016.

7



St
yl

e
Im

ag
e

λf = 0 λf = 106 λf = 107 λf = 108

C
on

te
nt

Im
ag

e
Fa

ce
�ψ f

0.0143 0.0099 0.0061 0.0138

Figure 10: The weighting of the face loss in combination with the other loss weights can significantly impact the results of
the facial preservation and style transfer. Without facial preservation (λf = 0) the tiling across the faces cause discolorations
in the mosaic tiling. With facial preservation of λf = 106, the mosaic tiling is still present but the tiles are more uniform
in color. With a λf = 107 the tiling starts to disappear and the face loss decreases even further. However, if the face
loss weight increases further, λf = 108 the facial preservation significantly interferes with the stylization. Fine tuning this
hyper-parameter is a challenge, but somewhere between 106 and 107 produces the best results without sacrificing style.

Figure 11: Face loss over the VGGFace2 test dataset [2]. Each image in the dataset is stylized with and without facial
preservation (using our trained models), and the face loss of each image is computed. Plotted here are the differences
between the face losses. Although the average face loss is less when using facial preservation there are instances where the
face loss is less without facial preservation (∼ 18.8% for the mosaic style and ∼ 12.3% for the manga style).

[2] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman.
Vggface2: A dataset for recognising faces across pose and
age. In International Conference on Automatic Face and
Gesture Recognition, 2018.

[3] D. Chen, L. Yuan, J. Liao, N. Yu, and G. Hua. Stylebank: An
explicit representation for neural image style transfer. CoRR,
abs/1703.09210, 2017.

[4] T. Q. Chen and M. Schmidt. Fast patch-based style transfer
of arbitrary style. CoRR, abs/1612.04337, 2016.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR09, 2009.

[6] V. Dumoulin, J. Shlens, and M. Kudlur. A learned represen-
tation for artistic style. CoRR, abs/1610.07629, 2016.

8



[7] L. A. Gatys, M. Bethge, A. Hertzmann, and E. Shecht-
man. Preserving color in neural artistic style transfer. CoRR,
abs/1606.05897, 2016.

[8] L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm
of artistic style. CoRR, abs/1508.06576, 2015.

[9] G. Ghiasi, H. Lee, M. Kudlur, V. Dumoulin, and J. Shlens.
Exploring the structure of a real-time, arbitrary neural artistic
stylization network. CoRR, abs/1705.06830, 2017.

[10] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H.
Salesin. Image analogies. In Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’01, pages 327–340, New York, NY,
USA, 2001. ACM.

[11] X. Huang and S. J. Belongie. Arbitrary style transfer
in real-time with adaptive instance normalization. CoRR,
abs/1703.06868, 2017.

[12] Y. Jing, Y. Yang, Z. Feng, J. Ye, and M. Song. Neural style
transfer: A review. CoRR, abs/1705.04058, 2017.

[13] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for
real-time style transfer and super-resolution. In European
Conference on Computer Vision, 2016.

[14] Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu, and M. Yang. Diver-
sified texture synthesis with feed-forward networks. CoRR,
abs/1703.01664, 2017.

[15] Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu, and M. Yang.
Universal style transfer via feature transforms. CoRR,
abs/1705.08086, 2017.

[16] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B.
Girshick, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick. Microsoft COCO: common objects in context.
CoRR, abs/1405.0312, 2014.

[17] A. Odena, V. Dumoulin, and C. Olah. Deconvolution and
checkerboard artifacts. Distill, 2016.

[18] F. Shen, S. Yan, and G. Zeng. Meta networks for neural style
transfer. CoRR, abs/1709.04111, 2017.

[19] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[20] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky. Instance
normalization: The missing ingredient for fast stylization.
CoRR, abs/1607.08022, 2016.

[21] H. Wang, X. Liang, H. Zhang, D. Yeung, and E. P. Xing.
Zm-net: Real-time zero-shot image manipulation network.
CoRR, abs/1703.07255, 2017.

[22] J. Wang, Y. Yuan, and G. Yu. Face attention network:
An effective face detector for the occluded faces. CoRR,
abs/1711.07246, 2017.

[23] H. Zhang and K. J. Dana. Multi-style generative network for
real-time transfer. CoRR, abs/1703.06953, 2017.

[24] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. Joint face detection
and alignment using multitask cascaded convolutional net-
works. IEEE Signal Processing Letters, 23(10):1499–1503,
Oct 2016.

9




